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This paper studies the two-dimensional convective motion in a rectangular 
cavity, the two vertical sides of which are maintained at different temperatures. 
This system is studied for the special case in which the temperature difference 
AT between the two vertical walls is so large that the transfer of heat from one 
vertical wall to the other is achieved almost entirely by convection. Heat transfer 
by conduction is assumed to be of importance only in thin boundary layers 
adjoining the walls. For a cavity of height H ,  the boundary layers on the two 
vertical walls are found to have thickness proportional to i', where t4 = KvH/ygAT, 
and the condition for the boundary-layer regime to be established is that I be 
small compared with the width of the cavity. An approximate solution of the 
problem is obtained for the case of large values of the Prandtl number v / K ,  and 
found to be in satisfactory agreement with experimental results obtained by 
Elder ( 1965). 

1. Introduction 
The fact that air is a good insulator has been appreciated and utilized in the 

construction of buildings for many years. For instance, in the construction of 
dwellings, it is common practice to build walls consisting of two thicknesses of 
brick separated by an unventilated air gap of a few inches. Heating engineers 
have therefore been concerned with discovering how much heat is transferred 
across the air gap, and with how the rate at  which heat is transferred depends on 
the distance between the two vertical walls and on the temperature difference 
between them. The problem has been formulated in the following two- 
dimensional form (Batchelor 1954). A fluid of kinematic viscosity v, thermal 
diffusivity K ,  and with coe%cient of cubical expansion y ,  fills a rectangular cavity 
bounded by two vertical walls, distance L apart, and two horizontal walls, 
distance H apart. If the two vertical walls are maintained at different tempera- 
tures T, and T,, at what rate is heat transferred through the fluid from one 
vertical wall to the other? 

The problem has also been of some interest to geophysicists. In  many naturally 
occurring situations, fluid motion results from variations in the buoyancy force 
which are a consequence of horizontal temperature gradients in the fluid. This 
fact has led to theoretical and experimental studies of the role played by buoyancy 
forces in a variety of circumstances. The problem formulated above has been 
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studied for this reason, perhaps because of the simplicity of the geometry rather 
than because of any direct relevance to a particular geophysical situation. The 
emphasis of the geophysicist, however, is different from that of the heating 
engineer. The former is more concerned with details of the motion of the fluid 
and of the temperature distribution within the fluid rather than with the rate of 
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FIGURE 1. The co-ordinate system. The broken lines indicate the extent of 
the boundary layers. 

transfer of heat across the cavity which is the concern of the latter. However, to 
find the rate of heat transfer, one needs to calculate details of the fluid motion and 
temperature distribution, so the same calculations are required whatever the 
emphasis. 

The geometry and boundary conditions of the problem are summarized in 
figure 1. Cartesian co-ordinates (x*, z*)  have been introduced with origin at the 
mid-point of the left-hand vertical boundary, and with the x,-axis directed 
vertically upwards. The boundary conditions which must be satisfied by the 
temperature T* within the fluid are: 

(i) That the temperature takes on the imposed values T* = Ta and T* = Tb on 
the two vertical walls, x* = 0 and x* = L respectively. 

(ii) That there is no transfer of heat across the horizontal boundaries; that is, 
aT,/az, = O on z* = i- &H. 
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The convention is adopted that the left-hand wall is hotter than the right-hand 
wall, that is, that T, > Tb, so that the temperature difference between the two 
vertical walls is AT = T, - Tb. The exact condition to be imposed on the tempera- 
ture field at the two horizontal boundaries z* = * +His not thought to affect the 
solution a great deal, and the condition (ii) above is only to be regarded as one 
possibility. In  the work to follow, i t  is assumed, in fact, that a different condition 
on the temperature field at the two horizontal boundaries would only alter the 
solution significantly in the immediate vicinity of those boundaries. This assump- 
tion will preclude some extreme cases, of course, such as that of very long 
horizontal boundaries ( L / H  very large). 

Suppose that ( u ~ ,  w*) are the two components of the velocity of the fluid 
corresponding respectively to the co-ordinates (x*, z+). Then the equations to be 
satisfied by u*, w*, T* are the heat equation 

the continuity equation, which implies the existence of a stream functjon $*, 

(1.2) 
such that 

U* = -a$*ic/az, and W* = a$*/ax,, 

and the vorticity equation 

where 

is the vorticity and g is the acceleration due to gravity. The Boussinesq approxi- 
mation has been made, namely that density differences due to temperature 
differences are only of importance in producing differences in the buoyancy force. 
It has been assumed that the properties v, K and y of the fluid do not change 
significantly in the temperature range T, < T* < Tb. This assumption is valid if 
the temperature difference AT = T, - Tb is sufficiently small, but is often violated 
in practice because of the rapid variation of kinematic viscosity with temperature. 
It is thought that the method of approximation used later may be adaptable to 
include some effects of variation of v with T,, but such effects will not be con- 
sidered here, at  least on the grounds that this would introduce another parameter 
into the problem. The boundary conditions on $* and T* are 

$* = a$*/ax+ = 0, T* = T, on X* = 0 ,  (1.5) 

$* = a$*.ax, = 0, T* = Tb on X* = L, (1.6) 

and $* = a$*/az* = aT,/az, = o on Z* = ++H. (1 .7)  

The problem is to find the functions @*(x*, z+)  and T*(x,, z*)  which satisfy the 
equations (1.1)-(1.4) and boundary conditions (1.5)-(1.7). 

The theory of the problem has been considered previously by Batchelor (1954), 
who pointed out that there are three independent non-dimensional parameters 
on which the solution depends, as an examination of the equations and boundary 
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conditions shows. One, the aspect ratio H / L ,  depends only on the geometry of 
the system and another, the Prandtl number, v = V / K ,  is a property of the fluid. 
The third parameter, involving the imposed temperature difference AT, is the 
Rayleigh number, 

A = ygATL3/~v. 

Another property of the equations and boundary conditions is that they are 
unaltered by a simultaneous change of sign of the three variables, T* - *( T, + Tb), 
x* - &L and x * ,  while the sign of the fourth variable $pa is unchanged. Since this 
is a symmetry property involving reflexion about the centre x* = *L, z* = 0 of 
the cavity, it is termed the centro-symmetry property of the equations and 
boundary conditions. 

Batchelor showed that for sufficiently small values of the Rayleigh number, 
that is, for sufficiently small temperature differences AT, or sufficiently small 
distance L between the vertical walls, the transfer of heat from one vertical wall 
to the other is mainly by conduction. The temperature distribution and flow 
pattern predicted have since been confirmed in experiments by Eckert & Carlson 
(1961), Mordchelles-Regnier & Kaplan (1963) and by Elder (1965). These experi- 
ments have also confirmed Batchelor's prediction that, for sufficiently large values 
of the Rayleigh number, the vertical motion is confined mainly to boundary 
layers on the two vertical walls, and that the transfer of heat from one vertical 
wall to the other is mainly by convection. However, the core of the cavity, that 
is, the region not included in any of the boundary layers, is not isothermal as 
Batchelor suggested, the temperature T* in the core being found to depend on 
the vertical co-ordinate x 4 .  In  this paper, attention will be restricted to this 
boundary-layer regime which is found to exist for sufficiently large values of the 
Rayleigh number A .  

2. The equations and boundary conditions for boundary layers on the 
vertical walls 

Suppose the thickness of the boundary layers on the vertical walls is of order t. 
It will be assumed that this horizontal length scale l' of the boundary layers is 
small compared with the vertical length scale H ,  so that an approximation to 
(1.1)-(1.4) can be made in the boundary layers in the usual way (Goldstein 1938, 
p. 638). It will also be assumed that the thickness 4 of the boundary layers is small 
compared with the width L of the cavity, so that the boundary layers on the two 
walls are distinct, and separated by a core region. 

The orders of magnitude Y', k' of the stream function and horizontal length in 
the boundary layers can be deduced from the equations (1.1)-(1.4) in terms of 
the known orders of magnitude AT, H of the temperature and vertical length 
respectively. First, using the relation (1.2) between velocity components and 
stream function, it can be seen that the convection terms which comprise the 
left-hand side of (1.1) are of order YATI IH,  while the conduction terms on the 
right-hand side are of order KhT/e2. Now, for the case where heat transfer from 
one vertical wall to the other is mainly by convection, convection terms in (1.1) 
can be expected to be important in the boundary layer. Also, since heat transfer 
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into the fluid can only be by conduction, these terms must also be important. 
A balance between conduction and convection requires that 

Y A T I t H  N KATlP2, 

i.e. Y N & / I .  (2.1) 

Similarly, in (1.3), the convection terms on the left-hand side are of order 
Y 2 / f 3 H  N /c2H/P5 by (2.1). The diffusion terms on the right-hand side are of order 
vY/P4 N V K H / / ' ~ ,  by (2.1), while the buoyancy term is of order ygAT/l .  The ratio 
between the diffusion terms and the convection terms is of order V / K  = u, the 
Prandtl number. If the Prandtl number is large, the diffusion term is large com- 
pared with the convection term, and a balance with the buoyancy term which 

generates the motion gives V K H / P ~  N rgAT/ t ,  

i.e. e4 - vKH/(ygAT). ( 2 . 2 )  

The same magnitude applies if u is of order unity, although the convection terms 
need to be retained. Since, for most fluids other than liquid metals, the Prandtl 
number is not small, (2.2) will be used to define a horizontal length scale. For 
small-Prandtl-number fluids, the above scale analysis indicates that convection 
terms will be more important than diffusion terms over most of the boundary 
layers, but diffusion terms must be important in L sublayer since these terms 
contain the highest derivatives. For the moment, both convection and diffusion 
terms will be retained in the boundary-layer approximation. 

The relations (2.1) and (2.2) can now be used to defme scales for the stream 
function and horizontal co-ordinate by replacing N by = in these equations. 
Thus the following non-dimensional variables are defmed: 

} (2.3) 
x = x+/f, z = Z+/H, T = {T* - +(Ta + TB)}/AT, 

1 ~ .  = +*IT, U = (H/Y)u*, w = (ww*, c =  ( e v x , ,  
where f4 = vKH/(ygAT) and Y = & / P .  (2.4 1 
The non-dimensional horizontal co-ordinate x is chosen so that x = 0 on the left- 
hand vertical boundary, and the boundary condition (1.5) becomes 

$=$,=O, T = +  on x = O ,  (2.5) 

where the suffix x denotes differentiation with respect to x. The boundary-layer 
equations, that is the approximate forms of (1.1)-(1.4) valid in the boundary 
layers, are, in non-dimensional variables, 

uT~+wE = Txx, ( 2 . 6 )  

U = - $  z, w = $x, (2.7) 

(2.8) 

(2.9) 

( 1 / 4  ( U d  + wd) = cxx + Tx, 

c = @xx = w,. 
The boundary conditions for the layer on the left-hand vertical wall are (i) the 
conditions (2.5) at x = 0,  (ii) that, as z-+ & 8,  the solution must match solutions 
valid near z = & +, that is, in the corners, (iii) that, as x - f c o ,  the solution must 
match a solution valid in the core. 
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The boundary condition (iii) 
In order for the boundary layers to be distinct, and hence for a core region to 
exist, it must be assumed that the width t' of the boundary layers is small in 
comparison with the width L of the cavity. Using the definition (2.4) of I ,  this 
condition can be written as 

4 ygATL4 A 
=--&-=@ 1. (2.10) 

Note that can be interpreted as a Rayleigh number based on a vertical 
temperature gradient of AT/H and alength L. In  terms of the Rayleigh number A ,  
as usually defined (by (1.8)), is equal to the quotient of A and the aspect 
ratio HIL. 

The meaning of the sign & in (2.10) has to be interpreted carefully. In  a 
numerical sense, it is found later that h/t' needs to be greater than about 12 for 
the boundary layers to be regarded as at all distinct, which implies that (L/Q4 
needs to be greater than 2 x lo4. Analytically, of course, the meaning is that an 
approximation to the solution is sought which is valid asymptotically in the 
limit as I/L+ 0. Another condition has also to be satisfied by t', namely that, for 
the boundary-layer equations to be valid, PIH must be small. This condition is 
satisfied automatically in the limit as l/L+ 0 if the aspect ratio H / L  is kept fixed, 
but, of course, less restrictive assumptions on the behaviour of HIL  as PIL --f 0 
are possible. 

The boundary condition (iii) can now be deduced without reference to the 
dynamical equations. The essential difference between the core and the boundary 
layer is that the horizontal length scale in the core is much greater than in the 
boundary layer. In  fact one will expect the horizontal length scale in the core to 
be L, the width of the cavity. For instance, if the scale of the stream function in 
the core is the same as in the boundary layer, the core solution will have the form 

The matching process involves consideration of values of xg such that, as 
PIL+O, x+/L  = (P/L)x-tO while x+co (for instance, x J L  = (P/L)t), thus cor- 
responding to points which remain simultaneously in the core and in the boundary 
layer. For such values of x*, the core solution shows that, as P/L+ 0,  

$+$cA0,4 = $O(Z), say. (2.11) 

This, therefore, is a condition on the boundary-layer solution to  be satisfied as 
x + 00, provided that the scale of the stream function is the same in the core as in 
the boundary layer. If, on the other hand, changes in the stream function in the 
core are small compared with those in the boundary layer, the corresponding 
condition on the boundary-layer solution is @+const. as x-tco, which may be 
regarded as a special case of (2.11). 

There remains a further possibility, namely that the volume flux in the core is 
large compared with that in the boundary layer. This alternative will not be 
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considered here on the grounds that experiments clearly show that this is not the 
case. However, no reason seems to have been found for rejecting this possibility 
on theoretical grounds. In  fact, Batchelor (1954, $6) has built up a seemingly 
consistent picture in which the boundary condition corresponding to (2.11) is 
that w tends to a function of z as x+ co. The core is also assumed to be isothermal. 
Weinbaum (1964) used such a model for convection in a horizontal circular 
cylinder, although experiments of Martini & Churchill (1960) show that when 
such a cylinder is heated from the side there is, contrary to Weinbaum’s assump- 
tions, more volume flux in the boundary layer than in the core, and the tempera- 
ture in the core does vary with the vertical co-ordinate z.  This is a special case of 
Weinbaum’s, however, in which Weinbaum’s own analysis indicates a breakdown 
of the assumptions on which it was based (Weinbaum 1964, p. 434). 

The boundary condition for the temperature in the boundary layer is less 
ambiguous since the temperature differences in the core cannot be greater than 
the imposed temperature difference, AT. The above reasoning therefore shows 
that the appropriate boundary condition is 

T+T,(z) as x-+co, (2.12) 

where To is some function of z. 

3. Asymptotic behaviour of the boundary-layer solutions 
The boundary-layer equations (2.6)-( 2.9) are non-linear, and therefore 

difficult to treat analytically. However, a great deal of useful information can be 
derived from a consideration of the asymptotic behaviour of the boundary-layer 
solutions as x+co. This analysis will apply to circumstances in which the 
boundary conditions (2.11) and (2.12) are applicable, so let 

where (8,q5) represents a perturbation on the solution at x = 00, and so satisfies 
the conditions 

Before substituting (3.1) and (3.2) in the boundary-layer equations, it may be 
noted that (2.8) can be integrated with respect to x to give, using (2.9), 

O , $ + O  as x- fco.  (3.3) 

(l/g) (uw,+w~,) = w,,+T-TO(z), (3.4) 

where the additive function of z that arises from’ the integration has been deter- 
mined from the boundary conditions (2.11) and (2.12). (3.4) is the boundary- 
layer approximation to the vertical momentum equation. 

If now (3.1) and (3.2) are substituted in (2.6), (2.7) and (3.4)) and the analysis 
is restricted to values of x sufficiently large for terms of the second order in (0, q5) 
to be neglected, the following equations result: 

where 
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is the horizontal velocity at the outer edge of the boundary layer, 

w = Ilr, = $w (3.8) 

and the prime denotes differentiation with respect to z. 
The two equations (3.5), (3.6) involve no derivatives with respect to x ,  so that 

z appears in them only as a parameter. They make up a linear system of the 
fourth order in x, and the coefficients are independent of x, so the solution may 
be written as a sum of exponentials 

where An@) are the roots of the quartic equation 

A2(A +ao) (A + (~/o)u, }  + Th = 0, (3.10) 

as follows from substitution of (3.9) in the equations. In  general, the roots are 
complex, and so may be written 

h = A, + iA i ,  

where A, and A, are the real and imaginary parts respectively. The boundary 
conditions (3.3) require that only terms involving roots with positive A, should 
occur in (3.9). The values of A, concerned are important as they determine the 
rate of decay of 0 and $ as x -+ 00, and so give an indication of the boundary-layer 
thickness. If the corresponding values of A, are non-zero, an oscillatory behaviour 
of the solutions is indicated. 

The behaviour of the roots h in (3.10) depends on the sign of T;, so the three 
cases Th zero, negative and positive will be considered in turn. 

(a)  TA = 0. This corresponds to constant temperature at the outer edge of the 
boundary layer. An example is the boundary layer on a heated vertical plate in 
isothermal surroundings (Goldstein 1938, p. 638). The four roots in this case are 

A = 0,  0, -uo and -(l/cr)u0. 

It is immediately apparent that a boundary layer can only exist if u, < 0, that is 
if the layer entrains fluid. The reason is clear from (3.5). When Th = 0, there is 
nothing to balance the outward diffusion of heat save horizontal convection, and 
a balance can only be achieved if the convection is into the layer. This is the case 
for the boundary layer on a heated vertical plate which entrains fluid at all levels. 
It is interesting to note that, if the rates of diffusion of heat and momentum differ 
greatly, that is, if the Prandtl number is substantially different from unity, the 
two roots - u, and - (l/u) u., are very different, and so there are two different 
boundary-layer thicknesses. For (T large, for instance, there is a relatively thin 
thermal boundary layer. The differences in buoyancy force which drive the flow 
are confined to  this layer. In  it, convection of momentum is weak compared with 
the very strong diffusion of momenturn, with the result that the vertical velocity 
outside the layer does not vanish, but falls to zero in a much thicker layer outside. 
This behaviour is shown in computed solutions of the Goldstein problem (Ostrach 
1953). 
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(b)  TA < 0. This corresponds to an unstable temperature gradient a t  the outer 
edge of the boundary layer, and so is hardly likely to occur in practice. Since, by 
(3. lo) ,  the product of the roots is T;, which is negative, it  fallows that three roots 
have real part of one sign and one root has real part of the opposite sign. It turns 
out that the three roots with real part of the same sign are positive if the layer is 
entraining and negative if the layer is ejecting. If uo is zero, two roots have zero 
real part. 

\ 

1 %/( TI3 * - 2  -1 0 

FIGURE 2. The real parts h, of tho roots h of tho quartic, h2(A + uo) ( A  + uO/r) +Ti = 0, for 
(r = 1 (broken line) and B = 00 (solid line). Ti is positive, and only positive h, are shown. 
The roots are complex where a single value is shown and real where two are shown. The 
boundary-layer thickness is proportional to l/&. 

( c )  TA > 0. This corresponds to a stable temperature gradient at the outer edge 
of the boundary layer. This is the case of most interest here, since experiments 
show that there is a stable temperature gradient in the core of a rectangular 
cavity under the circumstances considered in this paper. An exact solution of the 
governing equations exists when T; is constant, and this is given as an example 
in the next section. In  the case where TA is positive, the product of the roots of the 
equation (3.10) is positive, and it follows that the real parts A, of the roots are 
either all of one sign or that there are two Ar)s of each sign. The fact that the sum 
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of the products of the roots three a t  a time is zero, by (3.10)) eliminates the first 
possibility. Thus there are two roots with positive real part as required whatever 
the value of uo. Thus a stable temperature gradient can support a boundary layer 
whether it is ejecting or entraining or even if uo is zero. In  the latter case, the 
roots are given by 

(4/TA)%A = '. 1 '. i, (3.11) 

and do not depend on the Prandtl number. 
In  general, (3.10) shows that A/(TA)f is a function of u,/(TA)f and cr. Figure 2 

shows the positive values of h,/(TA)t as a function of uo/(TA)B for the two cases, 
cr = 1 and cr = 00. If u,/(TA)B is small, the boundary layer may be said to be con- 
trolled by the temperature gradient, and so the two positive values of A, are close 
together and vary little with cr. If, on the other hand, u,/(TA)# is large, the effect 
of the temperature gradient is weak, so that, if cr is radically different from one, 
the two positive values of A, become widely separated as in case (a). 

A physical argument that indicates why a stable temperature gradient can 
support both entraining (uo < 0) and ejecting (uo > 0) layers, in contra- 
distinction to the case Ti = 0, is as follows. Consider a fluid particle in the 
boundary layer on, say, the hotter wall, and suppose that it is gaining heat by 
conduction. This gain of heat must be reflected by movement of the particle to 
a warmer part of the fluid. If there is no vertical temperature gradient, this will 
generally mean movement toward the wall (u -= 0). But, if a stable temperature 
gradient exists, upward movement will carry the particle to a warmer region and 
so it need not move toward the wall. 

4. An exact solution of the equations for free convection 
There exists an exact solution of the equations (1.1)-(1.4) which admirably 

illustrates case ( c )  discussed in 5 3 above. Furthermore, the approximate analysis 
of 5 5 6 and 7 indicates that this solution is a good approximation to the solution 
of the cavity problem near z = 0, so that it  is worth discussing in some detail. It 
is a special case of a solution given by Prandtl (1952, p. 422) for the 'mountain 
and valley winds in stratified air', or katabatic winds, the special case being that 
of a vertical rather than a slanting boundary. It is a solution corresponding to 
the following situation. An infinite vertical plate is held in a fluid whose tempera- 
ture at  x, = 00 varies uniformly with height, the uniform temperature gradient G 
being positive. The temperature of the plate is held at a value which differs by 
a constant amount, B, from the temperature at  infinity. Thus, choosing the 
origin to be on the plate at the level at  which the temperature at  infinity is zero, 
the boundary conditions on the temperature field are 

and 

T* = Gz, a t  x* = co 

T , =  B+Gz,  a t  x, = O .  

A solution exists of the following simple form 

T* = O(X*)  + Gz,, 

w = w*(x,), 
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the boundary conditions on 0, w *  being 

0 = B ,  w , = O  at x,=O; (4.3) 

O = O ,  w, = O  at x* =a. (4.4) 

Because of the simple form (4.1), (4.2) of the solution, the equations are greatly 
simplified. The motion is vertical everywhere so there is no horizontal convection 
and there is no vertical diffusion of momentum. In addition, the vertical tem- 
perature gradient has the same value everywhere, so there is no gain of heat at 
any point due to vertical conduction of heat. Thus the rate of gain of heat of 
a material particle moving upwards through a vertical temperature gradient G 
is equal to the rate of gain of heat of the particle due to horizontal conduction of 
heat ; that is, the heat equation is 

Gw, = ~ ( d ~ @ / d ~ i ) .  (4.5) 

This equation may be derived by substitution of (4.1)) (4.2) in (1.1). The 
momentum equation is equally simple. The sum of the rate of gain of a vertical 
momentum of a particle due to horizontal diffusion and the buoyancy force on 
the particle, relative to that at  x* = co, is zero, that is 

(4.6) 0 = v(dZw,/dx$) + ygO. 

This equation may be derived by substitution of (4,1), (4.2) in (1.2)-(1.4) and 
integrating once with respect to x*. 

The two equations (4.5)) (4.6) combine to give 

(v4d4/d4) + ygG) (0, w,) = 0. (4.7) 

The horizontal length scale 1 involved is given by 

e4 = ~vK/(Y@), 

which corresponds to (2.4) if the temperature gradient A T / H  is identified with 
tG. The faetor 4 is included for convenience. The solution of (4.5), (4.6) satisfying 
(4.3), (4.4) is 0 = E e-x cos x, (4.9) 

w* = (ygk-/vQ)* B e-” sin x, (4.10) 

where x = x*/1 as in (2.3). It is interesting to note that equations ( 4 4 ,  (4.6) are 
the same as equations ( 3 4 ,  (3.6) when u,, = 0 and Th E const. Hence, when there 
is no entrainment and the temperature gradient is constant, the asymptotic 
aolution is valid everywhere. 

Four noteworthy features of the solution (4.9), (4.10) are that: 
1. there is no dependence on the Prandtl number; 
2. the vertical velocity is independent of height and there is no entrainment; 
3. there is a change in sign of the vertical velocity a t  x = n, and a weak reverse 

flow for 7~ < x < 2n. The same oscillating behaviour is shown by the temperature, 
which, at  a fixed level, overshoots its asymptotic value to reach a maximum (or 
minimum) at  x = +n; 

4. the boundary layer has constant thickness 1. 
As G + 0, the thickness 1 of the layer tends to infinity. This is consistent with 

the result for a semi-infinite plate for G = 0 (Goldstein 1938, p. 638), which gives 
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a boundary-layer thickness that grows indefinitely with distance along the plate. 
A stable temperature gradient G may therefore be regarded as limiting the 
thickness of the boundary layer in the same way that rotation can limit the 
thickness of an ordinary boundary layer. The above solution is in fact analogous 
to the solution for an Ekman layer (see, for example, Prandtl 1952, p. 356), due 
to the well-known analogy between the motions of rotating and of stratified 
fluids (an example is given by Jefieys 1928, $7).  The analogy may be useful 
when considering the stability of the flow (4.9), (4.10) to small disturbances, as 
this will be related to the stability of an Ekman layer. For time-dependent flows 
of real fluids, the analogy works only when heat and momentum diffuse at  the 
same rate, that is only for unit Prandtl number. Given this, the equations 
satisfied by u,, 0 = T,-Gx,, and w, are the same as those for the velocity 
components u*, v,, w, relative to a frame rotating with angular velocity !2 about 
the 5, axis, provided they depend only on x*, x ,  and time t,. !2 can be identified 
with v/P2 where t is given by (4.8) and v, identified with - (yg/G)40. 

5. The core solution 
After the general discussion of the last two paragraphs, let us return to the 

cavity problem and consider the solution in the core. It will be assumed (see 
discussion at end of 5 2) that the scales of the stream function, temperature and 
vertical distance are the same as those in the boundary layer, that is Y.’, AT and H 
respectively. Y is defined by (2.4). Taking the horizontal length as the width L 
of the cavity, the orders of magnitude of the various terms in (1.1)-(L4) can be 
compared with the aid of the conditions P < H and P < L. It will be assumed that 
the Prandtl number B is either large or of order unity. 

The relative order of the various terms in (1. l), (1.3) will depend on the aspect 
ratio, H / L .  In  (1.3), the convection and diffusion terms are respectively of orders 
P2/a(L2 + H2)  and P3L/(L2 + H 2 ) 2  compared with the buoyancy term. These orders 
of magnitude are both small compared with unity provided L < H4/P3, so if this 
condition is satisfied (1.3) reduces in the core to 

Thus the core solution is, in non-dimensional terms, 

where To(x) is the same function as that which occurs in (2.12). 
In  (l.l), the conduction terms are of order PL/(L2 + H 2 )  relative to the conveo- 

tion terms, and this order of magnitude is small compared with unity provided 

and if this condition is satisfied so is the condition L < H4/P = (H2/P)  ( H z / P )  
required for (5.1) to be valid. In  that case the heat equation reduces in the core to 

If Th were zero, the temperature scale in the core would not be AT as assumed, 
so this equation implies that in the core 

aT,px, = 0.  

T = To(x), (5-1) 

L < H2/P, (5.2) 

T~( .z )  a@*/ax, = 0. (5.3) 

@ = @ 0 ( 4  (5.4) 
where @o is the same function as that in (2.11). 
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It will be assumed that (5 .2)  holds so that (5.1) and (5.4) are valid fist approxi- 
mations in the core. The condition (5.2) can only be violated if the aspect ratio 
HIL is small, that is, for a cavity whose height is much smaller than its width. 
The neglected term of highest order is the vertical conduction term in the heat 
equation (1.1). So, to the next level of approximation, 

(6.5) 

where $hl is some function of x .  Thus the small slope of the streamlines is given in 
terms of first-order quantities by 

Because of the centro-symmetry property mentioned in $1 ,  To must be an odd 
and $o an even function of x .  In  particular uo(0) = - $h(O) = 0 and the solutions 
of (3.10) a t  z = 0 are given by (3.11). This solution does not depend on the Prandtl 
number so it may be concluded that the solution near z = 0 depends very little 
on the Prandtl number. 

6. An approximate solution to the convection problem 
In  order to  find an approximate solution to the convection problem, it is first 

necessary to find an approximate solution to the boundary-layer equations, (2.6) 
and (3.4). The method employed for this purpose follows a modification of the 
Oseen technique suggested by Carrier (1962). It is based here on the observation 
that, at each level x = const., the quantities u and T, appearing in the convection 
terms vary across the boundary layers from zero on the vertical boundaries to 
values of uo(x) and TL(z), respectively, in the core. As an approximation, u and 
will be replaced at each level, z = const., by average values uA(x) and TL(z) which 
will presumably lie between zero and the core values uo(z) and T;(z), respectively. 
By symmetry, ZC, will be an odd and TL an even function of z. 

In  the subsequent analysis, the case of infinite Prandtl number, u = 00, is 
chosen. In  Elder’s (1965) experiments CT was large, of order 1000. (3.4) then 
becomes a linear equation as the left-hand side vanishes. Thus it is only necessary 
to approximate the heat equation (2.6). When the average values are substituted 
it becomes 

or, using (3.1), 

Similarly, for CT = co, (3.4) becomes 

~ ~ ( 2 )  8, + T;(Z) w = Ozz. 

o = w,,+e. (6.2) 

These equations have the same form as (3.5), (3.6) when u = 00, the only 
difference being that the suffix A replaces the suffix 0. Thus the solution has the 
form (3.9) where A, are now the roots of 

h3(A -t u ~ ( z ) )  + T;(Z) = 0. (6-3) 

Figure 2 shows the positive values of A,/(TL)& as functions of uA/(Ti)$. 
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Since the solutions are now approximate solutions for the whole of the 
boundary layer, the boundary conditions (2.5) may be applied. Thus 

where A,, A, are the roots with positive real part of (6.3). 
To relate the average values of u,, TI, to  the core values uo, T& integral condi- 

tions can be used following Karman and Pohlhausen (cf. Goldstein 1938, p. 641). 
Suitable integrals are the conservation of mass and heat, integrals with respect 
to x of (2.7) and (2.6) respectively. They are 

Momentum is conserved automatically since (3.4) is satisfied exactly. 
Substituting (6.4), (6.5) in (6.6), (6.7) gives 

&-TO 
Ilr, = A,A,(A,+A,)' 

d (8  -To)' clz ( 2(A,+A2)2 ) + $ o ~ ; =  (+-T~) 

where A,, A, are the roots with positive real part of (6.3). Since the integrals do 
not depend on which root is called A, and which A,, they only involve the 

(6.10) 
invariants 7 = h l + A 2  and x=A,A, ,  

and these invariants are related to uA and TI, by (6.3). The relationship is 
relatively simple because of the fact that and T, are odd functions of x .  Thus 
(6.3) is invariant under the transformation z+ - z ,  A + - A and so the four roots 
are A,(z), A,(z), -A,( - z )  and -A,( - 2). Comparing (6.3) with 

( A  - A,(z)) ( A  - A,@)) ( A  + A,( - 4) ( A  +A,( - 2 ) )  = 0, 

and equating like powers of A gives 

(6.11) 

Elimination of 7( - x )  and x( - z )  would lead to the required relations. 
In  addition to the two equations (6.8), (6.9) relating the four unknown func- 

tions uo, To, u,, and TA, two similar ones may be obtained by applying the 
integrals to the other boundary layer, giving four equations in all. Four equivalent 
equations may be obtained by taking odd and even parts of (6.8), (6.9), using the 
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property that uo, To, U ,  and T, are all odd functions of z. To make full use of this 
symmetry property, the invariants 7 and x will be expressed in terms of odd and 
even functions, q and v. The even function is defined by 

V = 7 ( - 2 ) + 7 ( 2 ) .  (6.12) 

Instead of using uA = 7( - z )  - ~ ( z )  as the odd function, it is convenient to define 

q = UAIV. (6.13) 

Then using (6.10)-(6.13), 7, x and h may be expressed in terms of the odd function 
q and the even function v. 

(6.14) i 
7 = +v(l-q),  

x = &v2(1- 4 2 ) ( l -q ) ,  

41,2 = &(1-q)[14iyl(1+2q)I. 

q, in fact, gives a measure of the parameter 

(6.15) 

and varies between 5 1. For IqJ < 3, the roots are complex, and the boundary 
layer is controlled mainly by the temperature gradient ( $ 3 ( c ) )  for q small. For 
q < - 3, the roots are real and become widely separated as q+-  1, so that the 
boundary layer has a double structure ( $  3 (a) ) .  q > 73 represents an ejecting layer 
weakly controlled by the temperature gradient ( $ 3  (c)). 

The solution of (6.8), (6.9) involves some algebra, and only the main steps will 
be outlined. First, (6.14) may be used to substitute for 7 = A,+A, and x = h,A2 
in (6.8), (6.9). The odd and even parts of the resulting equations then make up 
four equations relating $o, To, q and v. The odd and even parts of (6.8) give 

(6.16) 

These expressions may be substituted in (6.9), the odd and even parts of which 
give two differential equations involving q, v,  and their derivatives with respect 
to z. The quotient of the two equations gives dvldq as a function of q and v,  and 

2( 1 + 3q2)V 

C( 1 + q2)% (1 - q”’ 

integrates to give 
V =  (6.17) 

where C is a constant. Comparing this equation with (6.16), $o is found as a 

$o = c3( 1 + 42) (1 - q2)2 (1 + 3q79-y. (6.18) function of q, 

It remains to find q as a function of 2. This can be done by substituting (6.17) in 
the odd part of (6.9) to give 

dz C4( 7 - q2)  (1 - @)3 (1 + q2)Q 

d q =  2( 1 + 3qZ)V 
(6.19) 

Fluid Mech. 26 34 
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If the integration is started from z = 0, where q = 0, the integral contains only 
one unknown, the value C3 of $o at z = 0. Equation (6.19) shows that C occurs 
only in a scale factor for z. This scale factor could be determined by matching the 
core solution with solutions valid in boundary layers on the horizontal 
boundaries. These boundary layers will be thin and, in the limit as their thickness 
tends to zero, one might expect that the full boundary conditions (1.7) could be 
replaced by a condition on the core solution. 

The appropriate condition to apply would seem to be that the boundary layer 
has emptied itself by the time it reaches the top, that is, that 

$ o = O  a t  z =  -+i. (6.20) 

This condition is equivalent to requiring that, in the boundary layers on the 
vertical walls, w = 0 at  z = k +, and (6.4) shows this requires To = + or Al,2 = 00. 

In  fact it is found that To = Q at z = Q and Al,2 = 00 at x = - Q. The former condi- 
tion corresponds to all the fluid having been warmed to a temperature T = 4 by 
the time it reaches the top of the warm wall. This warm fluid is carried across the 
top of the core. Correspondingly, cold fluid at temperature T = -i enters the 
boundary layer at  the bottom of the warm wall, while the temperature on the 
wall itself is T = + +. Thus there is a singularity a t  the bottom of the warm wall, as 
there is also in the Goldstein solution at  the bottom of an isolated warm wall. 

7. Results 
The results obtained by integrating (6.19) and so finding To, $,,, etc. as func- 

tions of z are shown in figures 3-7. For the results shown in figures 4-7, the scaling 
factor C4 in (6.19) has been chosen so that the condition (6.20) is satisfied. This 
condition gives the value C4 = 0.693, and leaves no disposable constants. For 
figure 3, C has been chosen differently as described below. Let us now consider 
each figure in turn. 

Figure 3 shows the temperature To in the core as a function of vertical posi- 
tion x .  The plotted points are experimental values taken from Elder (1965, 
figure 4(b)). The solid line is the theoretical curve, scaled with a value of C chosen 
to give the same gradient at the point where To = 0 as in the experiments, and 
positioned so that To = 0 at the same place as in the experiments. Discrepancies 
between theory and experiment should then show up as differences in the shapes 
of the curves, and, in particular, in the positions a t  which To = 5 0.5. The curves 
agree well in the lower half of the cavity, but not so well in the upper half. This 
fact points to the asymmetry in the experimental curves, in contradistinction to 
the symmetry predicted from the equations and boundary conditions discussed 
in this paper. The main reason for the asymmetry in the experiments is thought 
to be the variation of viscosity with temperature. For instance, the viscosity of 
the silicone oil used by Elder varies by a factor of 3 over the largest tempera- 
ture range (35.5 "C) quoted in Elder's table 1. This seems a very large factor, but 
the viscosity appears in the theory only to the one-quarter power, and va will 
only vary ? 15 yo from its mean value if v varies by a factor of 3. 
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Note that the theory gives a temperature gradient that approaches infinity as 
z -+ i- 0.5. In practice the gradient will be limited by diffusion and the curve will 
be modified in the boundary layers on the horizontal boundaries. 

The boundary-layer thickness l /A,  can be found from (6.14) once q is found as 
a function of z. The variation of this thickness with vertical position is shown in 
figure 4(a) .  Its thickness half-way up is lase, where P is given by (2.4). 

0.5 

To 

0' 

X 

A 

0 
0" 9 

- 0.5' 111111111111 - 0.5 0 0.5 
z 

F I G ~ E  3. The temperature T,(z) in the core. The solid line is the theoretical curve. The 
experimental points (Elder 1965, figure 4(b)) are for a Rayleigh number of A = 1.2 x 106 
and various aspect ratios, h = H / L .  0, h = 18.8; X ,  h = 10.0; A, h = 5.0;  0 ,  h = 3.5. 

The value $o of the stream function in the core varies with z as shown in 
figure 4 (b) .  It gives a measure of the mass flux in the boundary layer a t  each level. 
The value of the dimensional stream function at the centre of the cavity is 
0 . 7 S ~ H / t ,  where t is given by (2.4). The gradient of @o, @; = - uo, is a measure of 
the horizontal velocity in the core. The theory gives u0+ 00 as z-+ 5 0.5, but in 
practice diffusion will limit u0 to a finite value and the solution will be modified 
in thin layers near the top and bottom. Note that most of the flux across the core 
takes place near the upper and lower boundaries. 

In  figure 4 (c ) ,  the variation with z of the local Nusselt number ( - /3z)z.o is 
depicted. The value half-way up is 0.27. 

When To, A, and A, have been found as functions of x using (6.14)) (6.16), (6.19) 
and C has been chosen to satisfy (6.20), the variations of vertical velocity w and 
temperature 0 in the boundary layer can be found from (6.4), (6.5), at least to the 
approximation of the theory. The values given by the theory at any point are 

34-2 
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uniquely determined since there are no disposable constants. At x = 0, the solu- 
tion has the same form as the exact solution (4.9), (4.10), essentially because the 
entrainment is zero there. 

In figure 5, the variations of temperature with horizontal position are shown 
for three different levels, and compared with experiment (Elder 1965, figure 3). 
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FIGURE 4. (a) The boundary-layer thickness I/&, (b)  tho stream function @,, for the core, 
and (c) the local Nusselt number, ( - as functions of z. 
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FIGTJRE 5. The horizontal variation of the temperature, 8 = T - To, at the levels z = 0, 
0.3. Tho broken line corresponds to z = 0. The experimental points are from Elder 1965, 

figure 3, and correspond to the levels indicated. 0, z = -0.3; 8,  z = -0.1; 0, z = 0.1; 
@ , z = 0.3; 0, all 4 preceding values. 
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The agreement is very good, considering that there are no arbitrary constants 
available for curve fitting. The curve for z = 0 has the same form as (4.9). 

Similarly, in figure 6 good agrement is found for velocity profiles w(x)  a t  
different levels, comparison being made with Elder's figure 7. The velocity scale 
was determined using the value K = 1.05 x em2 see-l appropriate to the 
silicone oil used in the experiments. The curve for x = 0 has the same form as (4.8). 

W 

0.2 

X 

FIGURE 6. The variation of vertical velocity w with horizontal distance x at three different 
levels, z = 0, 4 0.3. The experimental points are from Elder 1965, figure 7, and correspond 
to the levels indicated. 0, z = -0.37; 0,  z = -0.24; 8,  z = -0.10; x ,  z = 0.03; 
A, z = 0.16; 0, z = 0.29. 

Further comparison of velocity profiles can be made using Elder's figure 6, 
which shows wfx) at x = 0 for a series of values of A / ( H / L )  = (L/b)4. His theo- 
retical curves are of the same form as given by the above theory at z = 0, that is 
of the same form as (4.10), but he chooses velocity amplitudes which give the 
best fit with experimental curves. Also his horizontal length scale was slightly 
smaller (8 %) than that given by the above theory. The comparison is interesting 
as it gives an indication of how small PIL must be for the boundary-layer theory 
to  be valid. Consider the value of ll*5f'/L, which is the ratio of the boundary-layer 
thickness, as measured by the position of the first zero of w(x),  to the half-width 
4.L of the cavity. For Elder's examples the values are (a)  1.8, (b)  0.9, (c)  0.8 and 
(d )  0.4. The fitted amplitudes are respectively the following fractions of the 
theoretical values: (a) 0.4, (b )  0.7, (c)  0.8 and (d )  1.0. The agreement improves as 
t / L  decreases, but the discrepancy is very large when ll*5P/L < 1, that is, when 

This may be regarded as a condition for the boundary-layer theory to be valid. 
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The isotherms shown in figure 7 (a) were calculated using (6.5). Comparison 
with Elder’s figure 2 shows qualitative agreement except in the boundary layer 
on the upper surface, which was free in Elder’s experiment. For quantitative 
comparison, note that x = 4 corresponds to xb = 0.34L in the experiment. An 
interesting feature is the reversal of horizontal temperature gradient in the layer 
which is a feature, for instance, of the exact solution discussed in $4. 
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FIGURE 7. (a) Isotherms, and ( b )  streamlines for the boundary layer on the hot wall. The 
streamlines are drawn at intervals equal to one quarter of the value of the stream function 
at the centre of the cavity. 

The stream function $(x, z)  for the boundary layer can be calculated by integra- 
tion of (6.4) with respect to x. The streamlines are shown in figure 7 ( b ) .  If the 
stream function is scaled to 100 at the centre, the streamlines drawn correspond 
to values of 25, 50, 75 and 100, with a maximum value of 104. Comparison may 
be made with Elder’s figure 8, which shows the same qualitative features. For 
quantitative comparison, note that x = 4 corresponds to xb = 0.07L in the 
experiment. An interesting feature is the set of closed streamlines in, or partially 
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in, the boundary layer. The experiments show more asymmetry about z = 0 
than the theory. This could be a second-order feature, as is the small slope of the 
streamlines, which is of the same order as given by (5.6). 

A further feature of the approximate solution, not shown in the figures, is the 
variation of the parameter q with 2. q is a parameter which measures the relative 
importance of the vertical temperature gradient and the horizontal motion in 
controlling the dynamics of the boundary layer. Except in the end one-tenth of 
the cavity, q < 0.3, so, by (6.15), u,/(T’Ji < 1, implying that, in most of the 
cavity, the boundary layer is controlled by the vertical temperature gradient. 
This has the further implication that the flow has only a weak dependence on 
the Prandtl number, as is indicated by the extreme case of the exact solution 
discussed in Q 4, which does not depend on the Prandtl number at all. 

8. Discussion 
Neither the boundary layer nor the core solution depend on the Rayleigh 

number A or the aspect ratio HIL.  In  the approximate solution found above, 
these parameters determine only the ratio of the thicknesses of the two regions, 
which is proportional to ((H/L)/A)t. Effects neglected above which will lead to 
a slight dependence on A and HIL are: 

(i) The small slope of the streamlines. This will lead to solutions that depend 
on the distance between the two boundary layers; 

(ii) the effect of the boundary layers on the horizontal boundaries. 
In  order to gain a physical insight into the situation, it is perhaps useful to look 

at it this way. Consider a cavity which is initially at a uniform temperature with 
one vertical wall held a t  a higher temperature and the opposite wall at a lower 
temperature. Boundary layers will begin to form on the vertical boundaries. In 
the absence of the top and the opposite wall, the boundary layer on the warmer 
wall would develop into one like the steady boundary layer on an isolated wall 
(Goldstein 1938, p. 638). This layer entrains fluid a t  all levels, with the strongest 
entrainment at the bottom where the horizontal temperature gradients, which 
are responsible for the flow, are greatest. In  the cavity, however, there are two 
layers competing for fluid, so one would expect the layer on the warmer wall to 
entrain fluid from the lower half of the cavity, and the layer on the cooler wall to 
entrain fluid from the upper half. 

In  the final steady state, there is the same competition for fluid. The entrain- 
ment into the lower part of the warmer layer brings fluid from the cooler layer 
opposite. This influx of cooler fluid maintains a strong horizontal temperature 
gradient across the layer, and this gradient maintains the upward flow in the 
layer and the entrainment into the layer. The flow across the core brings cooler 
fluid into the lower half and warmer fluid into the upper half, leading to a stable 
vertical temperature gradient in the core. This vertical gradient is of profound 
importance as it is the main factor in determining the structure of the boundary 
layers on the vertical wall. Its existence allows the boundary layers to eject as 
well as to entrain fluid. 

The flow in the core is weaker than in the boundary layers on the vertical walls 
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and is not strong enough to maintain a horizontal temperature gradient. Thus 
the isotherms in the core are horizontal. Since the streamlines in the core tend to 
follow the isotherms, they are also horizontal in the core. 

Finally, viscous and thermal diffusion in the neighbourhood of the horizontal 
boundaries will tend to limit the velocity and temperature gradients there. 
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